VLIZ Intro Archive Manual Policy Register Contact FAQ

Direct Link

File: 'Arosioetal2023_FCNN_mod_map.zip'

IMIS metadata and citations

Morphological map of the Irish continental shelf created using Deep Learning [dasid=8521] show more

File properties

FilenameArosioetal2023_FCNN_mod_map.zip
Direct linkhttps://mda.vliz.be/directlink.php?fid=VLIZ_00001115_65f455c54bd37443176027
DatatypeModel Data
MIMEtypeapplication/x-zip-compressed
AuthorsArosio, R.; Hobley, B.; Wheeler, A.; Sacchetti, F.; Conti, L.; Furey, T.; Lim, A.
DataproviderArosio Riccardo
Email Dataproviderrarosio@ucc.ie
Conditions of useCC-BY 4.0
Creationdate
SubmitterMarquez Laura
Submit date2024-03-15 14:05:57
Archived byMarquez Laura
Archive date2024-03-15 14:24:56
PathMission_Atlantic/Map_Irish_continental_shelf_using_Deep_Learning/
Start year
End year
SummaryMorphological map (10 classes) of the Irish shelf resulting from the modal aggregation of the qualitatively and quantitatively best Fully Convolutional Neural Networks models obtained in the study from Arosio et al. 2023.
DescriptionMorphological map (10 classes) of the Irish shelf resulting from the modal aggregation (Cell statistics “MAJORITY” in ArcGIS Pro 3.1) of the qualitatively and quantitatively best Fully Convolutional Neural Networks models obtained in the study: Arosio, R., Hobley, B., Wheeler, A. J., Sacchetti, F., Conti, L. A., Furey, T. and A. Lim, 2023. Fully convolutional neural networks applied to large-scale marine morphology mapping. Frontiers in Marine Science, Sec. Ocean Observation, 10, https://doi.org/10.3389/fmars.2023.1228867
Changes

Metadata

Content
Type of data Output data
Data origin derived/modelled/interpolated
Materials and methods
Model Name Fully Convolutional Neural Networks
Version
State-variables
Temporal Scope
First date
Last date
Geographic Scope
Sea area(s)
Location
Additional information
Other info
Link file